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 Fuel efficiency, emission control, operating durability and predictive 

maintenance requirements continue to grow on today's engine management 

systems. Traditional real-time optimization approaches are often limited 

with decision rules being static and one-dimensional objectives, and limited 

usage of predictive intelligence, resulting in suboptimal performances 

under dynamic operational conditions. In order to overcome such 

limitations, a next-generation artificial intelligence (AI)-based real-time 

optimization framework for intelligent engine management systems is 

proposed in this paper. The proposed architecture includes multi-sensor 

data-driven machine learning models like Random Forest, Gradient 

Boosting, XGBoost, LightGBM and deep neural models with Monte Carlo 

Dropout for uncertainty quantification. Multi-objective optimization is 

carried out by NSGA-II, this algorithm represents a trade-off between fuel 

consumption, emissions, efficiency and component life. A digital twin 

simulation layer is used for lifecycle-aware predictive insights while an 

autoencoder-based anomaly detection layer is used to proactively detect if 

the engine behavior is abnormal. SHAP Explainable AI gives 

understandable interpretations on the function of features and the reasoning 

behind the choice. Physics-based feature engineering improves the 

robustness of models, as well as guarantees the compliance with the 

constraints of operations. The experimental validation of the synthetic and 

augmented engine datasets using experimentation evidences the correct 

remaining life prediction, multi-objective trade-offs, as well as high 

reliability in anomaly detection. The framework provides practical 

recommendations on predictive maintenance, performance control and real-

time control of operations, which fills the gap between intelligent AI and 

practical engine control. The holistic framework provides a scalable 

platform to the next-generation intelligent engines and helps create the 

sustainable, efficient, and robust industrial and transportation systems. 

Keywords : AI-Driven Engine Optimization, Predictive Maintenance, Multi-

Objective Optimization, Digital Twin Simulation, Explainable AI. 
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Introduction 
The evolution of the modern engine management systems has been marked by a progressive level of sophistication, 

which was associated with the incorporation of the enhanced level of sensors, the Internet of Things (IoT) as well as the 

rise of the need to achieve high efficiency alongside lower emissions. The performance of an engine is currently 

defined by the numerous interrelated parameters such as the engine speed, the fuel flow, the temperature, the 

pressure, the vibration, and the emission, all of which are a significant factor in the operational performance and life 

cycle of the engine. Monitoring and control of these parameters is currently vital since these systems are more and 
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more engaged with maintaining optimal functioning and meeting the strict environmental criteria and minimizing fuel 

use [1]. 

Their complexity has presented novel issues in the attainment of high efficiency as well as reliability. Studies have 

showcased the increasing significance of real time decision making during engine management especially when 

industries aim at reducing down times and maximizing performance in very competitive market places. More dynamic 

and real-time engine management systems that have the capability of responding to changes in operation and 

predicting failures in advance have replaced the old (traditional) methods that were mainly offline or limited to fixed 

operational settings. Hogh et al. (1988) note that the transition on reactive to proactive management of the engine 

systems is a significant move towards improving efficiency of the entire system and increasing its life [2]. Moreover, 

Kirchner et al. (2024) also gave attention to the importance of sensor-integrated machine components, which are critical 

in enhancing the reliability and effectiveness of these highly advanced systems [3]. 

The fact that the real-time decision-making process is required is based on the necessity of intelligent systems that can 

be dynamically adjusted with reference to operational data. They are systems that are typically driven by sophisticated 

data-driven models to mitigate risks, streamline their performance, and proactively respond to possible failures prior 

to their occurrence to affect the operations. A more current research by Jiang et al. (2023) states that the data-guided 

measures of control in automotive diesel engines are on the forefront of beating the hurdles of emissions and fuel 

efficiency [4]. Intelligent systems provide not only the capability of the engines to accommodate dynamic working 

conditions but also are significantly important towards meeting more demanding environmental regulations. 

The fact that modern engine management systems can greatly reduce the cost of operation and enhance reliability is 

among the most appealing features of this system. The combination of artificial intelligence (AI) and machine learning 

(ML) provides the potential solutions of predictive maintenance and optimization of the system. Fault diagnosis and 

predictive analytics AI can help create more efficient maintenance regimes to minimize downtime and make sure that 

the engines are functioning as they are intended. Moreover, these smart systems will help foresee the maintenance 

requirements, which will make it possible to take active measures and improve the reliability of the engines in general. 

Nevertheless, with all these developments, there is still a significant disparity between the actual implementation of 

predictive maintenance and optimization solutions. Particularly, predictive maintenance integration into dynamic 

optimization systems has not been achieved to the full extent and thus there remains a lot of room to be improved [5]. 

Vibration signal analysis is also among the areas where AI can be used in engine systems. According to the recent 

research, AI-based methods of engine vibrations analysis can be used to provide real-time data on the state of the 

engine, which can reveal the problems that might remain unnoticed by the traditional methods. These types of 

developments would enhance the accuracy and reliability of predictive maintenance, as the engine systems will be able 

to work longer without failure and the chances of failure occurring suddenly will be lower [6]. 

This study will seek to investigate ways in which AI and machine learning can be incorporated into real-time-based 

decision-making models in engine management but with specific consideration given to optimizing the performance, 

anticipating maintenance requirements, and improving the reliability of the system. Through an analysis of the most 

recent development in engine management systems, the study aims to offer useful information in the changing 

paradigm of engine control and maintenance that treats the loopholes in predictive maintenance and optimization 

systems that remain to be uncovered. 

Problem Statement & Gap 

Although there has been improvements in the engine management technologies, there are still some gaps in the 

available systems. Conventional approaches are mostly based on offline analysis and fixed models which do not 

consider the real-time changes in the operational condition. Although the predictive maintenance is a concept that has 

been developed, its adoption into the dynamic optimization procedures has remained untapped to an extent [7]. 

Moreover, most predictive models are trained on past data and fail to account for real-time variations, which makes 

them provide sub-optimal predictions to many complex, changing systems such as engines. 

Moreover, the majority of the current methods usually focus on just one variable, that is, fuel consumption, emissions, 

or maintenance intervals, disregarding the fact that there are always trade-offs between these variables. Multi-objective 

optimization has not received much attention in engine management systems, despite the fact that it has the potential 

to significantly enhance the decision making by balancing various opposing objectives [8]. The lack of explainability in 

these models is also critical as it is not easy to interpret the results and make informed decisions by the operators or 

engineers. It is further worsened when it comes to digital twin models, where the real-time feedback is critical to 

simulate and optimize the system behavior in the most accurate scenario [9][10]. 

The lack of common solutions, having the ability to simultaneously manage multi-objective optimization, predictive 

maintenance, and real-time decision-making is one of the major gaps that should be filled. Moreover, it is difficult to 

rely on AI-inspired solutions because of the absence of strong explainability mechanisms that allow one to anticipate 

the risks even in simple engine systems, when even minor failures can result in disastrous consequences [11]. It 
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requires a solution that will provide visibility in its decision-making; to enhance operational safety and efficiency [12]. 

Proposed Solution Overview 

In order to overcome these difficulties, we suggest an innovative AI-assisted model of real-time multi-objective 

optimization and predictive maintenance in sophisticated engine control tools. Our system combines predictive 

analytics, evolutionary programs, such as NSGA-II, and simulations through digital twins, and explainable artificial 

intelligence (XAI), which provides a holistic engine optimization solution [13][14]. The gist of the solution will be the 

utilization of machine learning (ML) and deep learning (DL) algorithms that constantly process real-time data of 

various sensors installed in the engine system. 

This framework is real-time and dynamically compensates to the changes in the operations and offers a feedback loop 

that minimizes fuel consumption and emission compliance besides forecasting maintenance requirements and 

minimizing engine failures. Our solution allows us to optimize multi-objectives where trade-offs among the different 

engine settings, such as fuel consumption, emission levels and costs, are taken into consideration with the help of the 

NSGA-II algorithm [15][16]. This takes care that no one goal is given precedence over the other hence offering a 

balanced management of the engine. 

Moreover, we also have explainability in our system according to SHAP values, whereby the engineers can know and 

trust the AI model decisions. This visibility and the ability to model a digital twin, important information about the 

lifecycle of engine components, which complements decision-making and maintenance plans can be obtained [17][18]. 

The digital twin can be used to create a virtual version of the engine and provide it in real-time and emulate potential 

scenarios in which the engine may perform [19]. 

Novel Contributions 

The contributions of this work are as follows: 

1. The work has the following contribution: 1. AI-enabled real-time optimization pipeline: The system has a 

dynamic nature, always optimizing the engine behavior; it receives real-time sensor measurements and 

operational data.  

2. 2. Hybrid predictive maintenance models: Predictive maintenance models by combining machine learning 

models (such as deep learning and gradient boosting algorithms) to forecast the possible engine failures before 

they happen [6].  

3. 3. Multi-objective NSGA-II optimization: This is a multi-objective maximization method that can be used to 

balance trade-offs between fuel usage, emission reduction, and maintenance schedules [12].  

4. 4. Digital twin simulation of lifecycle management: A simulation platform, which enables testing and 

optimization of engine performance and maintenance strategies in an artificial setting that can be realized in a 

real one [9]. 

5. SHAP-based explainability: An explainability mechanism that can be used to interpret the decisions of a model 

at the component level, which will enhance trust in the insights offered by AI as well as enhance transparency 

in decisions [10]. 

6. Increased predictive accuracy through MC Dropout: Adding uncertainty quantification through MC Dropout 

methods in order to make predictions more reliable [20]. 

Literature Review 

The development of engine management systems (EMS) has triggered the steep rise in predictive maintenance and 

real-time optimization with the growing complexity of modern engines. This is dependent on the classical and modern 

machine learning (ML) models including the deep learning (DL) structures to analyze massive datasets received by 

operational engines [21]. With the application of such techniques, the predictive models are more precise, which results 

in an increase in the operational efficiency, a decrease in maintenance costs, and the increase in the engine life [22]. 

The new literature is showing that the popular ML methods such as the Random Forests (RF) and Support Vector 

Machines (SVM) have been of invaluable use in fault prediction and performance optimization in the EMS [23]. These 

algorithms use the past and present time data to identify patterns in the failures and interventions are carried out in 

time. However, these techniques have potentially good performance, yet, the accuracy is often limited by the non-

linearity and complexity of engine systems which does not necessarily map to the classical algorithms [24]. 

To overcome such weaknesses, more recent methods such as the use of deep learning, which utilizes Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, have gained popularity due to their ability 

to train on complex, high dimensional data [25][26]. The models are more effective in features extraction and 

predicting time-series especially in cases where they will be applied in engine state monitoring and engine failure 

forecasting [27]. Also, since the availability of large-scale engine sensor and monitoring systems data is increasing, it 

has also facilitated the gradual application of deep learning techniques to predictive maintenance [28]. 

A more recent and groundbreaking strategy on optimization in EMS is the optimization of quantum computing, which 

can significantly improve the effectiveness of classical optimization methods by finding solutions to computationally 
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infeasible problems on classical systems. There is a lot of potential in quantum algorithms, including Quantum 

Approximate Optimization Algorithm (QAOA) and Quantum Neural Networks (QNN) to solve multi-objective 

optimization tasks and enhance real-time decision-making [29]. These quantum-enhanced techniques can significantly 

decrease the time of computation and achieve high predictive model accuracy in EMS [30]. 

Specifically, quantum machine learning (QML) has been suggested as a potential remedy of improving predictive 

maintenance systems. It is claimed in [31] that high-dimensional data can be handled better with quantum algorithms, 

which provides a significant speed-up in training models and in prediction. Moreover, quantum-inspired methods, 

based on classical models, but with quantum properties, have also been considered a valid way of achieving the 

benefits of quantum without a full-fledged quantum system [32]. 

It is also implied by the recent studies to utilize hybrid quantum-classical models, which would be a mixture of the 

strong points of the two paradigms. Zhang et al. [33] showed that these hybrid methods were capable of optimizing 

the engine performance, in addition to improving the strength of predictive maintenance models. It can be predicted 

that the implementation of quantum computing into EMS will significantly enhance the scalability of optimization 

tasks and accuracy, in addition to reducing the total cost of the computation, particularly in real-time scenarios 

[34][35]. 

Also, quantification of uncertainty in predictive maintenance models has received a literature interest. Quantum 

computing can provide a useful approach in tackling uncertainty, as quantum techniques can be used to model and 

quantify uncertainty in the data, as well as in the predictions [36][37]. This is of great importance to engine systems, in 

which real-time decision making can be associated with incomplete or noisy data. 

Although quantum computing has several benefits, there are several challenges associated with its application in real-

world applications. There are also problems of quantum noise, hardware constraints, and the difficulty of requiring 

special software systems to implement hybrid quantum-classical systems [38]. Researchers have indicated that 

quantum error correction and noise management are very essential issues that have to be looked at prior to quantum 

systems being reliably implemented in industry use [39]. 

The possibilities of quantum-enhanced models can also be illustrated by the latest advances in quantum-inspired 

algorithms in real-time optimization in EMS. Such algorithms have the potential to provide the more efficient answers 

to complex optimization problems, which will result in increased engine performance, fuel consumption, and 

maintenance optimization [40]. Also, methods which are quantum enhanced have been demonstrated to offer 

enhanced handling of multidimensional data which is a major challenge when it comes to real-time engine diagnostics 

and optimization [41][42]. 

In conclusion, the literature provides a distinct tendency towards the implementation of quantum computing in the 

sphere of the engine management systems together with the classical approach. Although a number of issues are still 

being experienced, particularly the hardware availability and correcting errors, the possible advantages of this hybrid 

solution are massive. In future, hybrid quantum-classical algorithms and their application to EMS is likely to represent 

a major factor in the future of predictive maintenance and optimization in the aerospace and automotive sectors 

[43][44][45]. 

Materials and Methods 

The suggested structure combines the latest technologies of forecasting maintenance and optimization of innovative 

engine management systems. It will allow real-time decision-making, maximizing various objectives at a minimum of 

system reliability and sustainability. The sections that follow give a breakdown of the components of the system, their 

interaction with each other and the mathematical formulations underpinning the system. 

General Framework  

The proposed system structure is composed of five key elements, which are vital in maintaining the efficiency and 

accuracy of the process of optimisation. These components include: 

1. Data Pipeline: Gathers and preprocesses sensor data of the engine systems. This information is important in 

coming up with features to be used by predictive models. 

2. Predictive Models: Predictive models such as the random forest, XGBoost as well as Deep neural networks (DNNs) 

are used to estimate engine health, maintenance requirements, and remaining life. 

3. Optimization Engine: Utilizes the methods of multi-objective optimization (e.g., NSGA-II) to trade off many goals 

among them fuel efficiency, emissions, and maintenance cost. 

4. Digital Twin: Offers real-time modeling of the engine, which is able to give insight into future maintenance needs 

as well as predictive feedback about the way the engine would behave. 

5. Explainability Module: Interprets and explains the decisions the model makes by using SHAP (SHapley Additive 

exPlanations) at the feature level to help make decisions about maintenance. 
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Fig 1: Block Diagram of the Overall Framework 

This Fig 1 shows the overall process of the system, beginning with raw data collection and proceeding through the 

multiple phases of the process, data processing, predictive modeling, and optimization. It emphasizes the 

interdependence among the parts of the system such as the optimization engine and the real-time feedback process 

and ultimately steer the system towards predictive maintenance decisions. The diagram highlights the dynamism of 

each phase interacting with each other to guarantee the constant optimization and making of decisions on time. 

Generation and Preprocessing of the engine data. 

Synthetic and augmented dataset: In this section, the authors analyze the results of a synthetic dataset and an 

augmented dataset (AL). 

The data generation procedure includes the generation of synthetics data on engine parameters like temperature, 

vibration, fuel flow and engine speed. Moreover, a method of data augmentation such as failure scenario oversampling 

are used in order to imitate rare events (e.g., system failures or high wear conditions) and achieve a balanced dataset. 

Table 1: Synthetic Engine Data Generation 

Feature Description Range 

Engine Speed Rotational speed of engine 1500–2500 rpm 

Fuel Flow Fuel consumption rate 3.5–7.0 l/h 

Temperature Engine temperature 80–150°C 

Vibration Vibration level 0.03–0.09 mm/s 

Pressure Engine pressure 85–115 kPa 

NOx Emission Nitrogen oxide emission 0.1–0.5 g/km 

Target Life Predicted engine life 0–12000 hours 

Physics-Informed Features 

Stress index, efficiency, and other features were designed on physical principles. As an example, the stress index was 

calculated using a combination of vibration and temperature and load data and efficiency as a function of engine speed 

and fuel flow 

Stress Index Formula 

                       (
           

   
)          ………………(1) 

Wherein eq(1)Vibration is in mm/s, Temperature is in °C, and Load is the fractional load of the engine load. 

Efficiency Formula 

           
            

             
……………..(2) 

eq(2) rpm is the Engine Speed, l/h is the Fuel Flow. 

Machine Learning, prediction models. 

Random Forest, XGBoost, Gradient Boosting: Some of the machine learning tools we used to predict engine life and 

maintenance requirements were the Random Forest, XGBoost, and the Gradient Boosting. The models are tested on 
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their Root Mean Squared Error (RMSE) where the aim is to reduce the error in the prediction. 

RMSE Calculation 

     √
 

 
∑ 

         
   

  
    

   
  ……………..(3) 

Equation (3) in       
   

is the true value,      
   

is the predicted value,   is the number of samples. 

Deep Neural Network (DNN) In combination with MC dropout: A Deep Neural Network (DNN) was implemented 

too as well as an MC Dropout variant to capture the uncertainty of the prediction. MC Dropout is an approximation of 

Bayesian inference that runs dropout in the training and testing phases. 

Algorithm 1: Training Process of DNN. 

1. Create the architecture of DNN using input dimensions and layers. 

2. State the loss function (Mean Squared Error). 

3. Initialize Adam optimizer. 

4. For each epoch: 

   a. Perform forward pass. 

   b. Compute loss. 

   c. Do reverse pass and weight updates. 

5. Continue until convergence or maximum epochs have been reached. 

3.4.3 Autoencoder based Anomaly Detection. 

An Autoencoder was made to identify anomalies in engine data by recreating the input data and quantifying the error. 

Deep Neural Network (DNN) and MC Dropout. 

Predictive maintenance is also performed by a deep learning model, namely modeling complex, non-linear 

relationships between engine parameters. Monte Carlo (MC) Dropout is used in the inference to measure uncertainty 

in the prediction. 

DNN Loss Function (MSE) 

     
 

 
∑      ̂      

 

   
………………(4 ) 

where                             ̂     the values predicted by the neural network in this eq(4). 

Autoenceroder Anomaly Detection. 

An autoencoder is required to identify an anomaly in engine data. The autoencoder is conducted in a manner that it is 

trained to reduce and rebuild input features. When the error in reconstruction is greater than a specified limit, then this 

is considered an anomaly. The concept of Multi-Objective Optimization is presented here in its simplest form, without 

involving any learning or training processes. 

Multi-Objective Optimization  

The idea of Multi-Objective Optimization is here represented in the simplest form, not referring to any learning or 

training processes. 

Algorithm 2: NSGA-II Optimization 

1. Generate an initial population of feasible solutions. 

2. loop until all directions have been explored: 1. Reproduce the population with mutation and crossover. 2. Select the 

best solutions using selection and crowding out. 

1. Randomly initialize population. 

2. Comparison of fitness of each solution (objective functions). 

3. Carry out non-dominated sorting. 

4. Use genetic operators (selection, crossover, mutation). 

5. Recommendation population to next generation. 

6. Continue till convergence or maximum generations. 
             (        ) 

                   (        ) 
            (        ) 

                                 (            )…………………..(5) 

Objective Functions for Optimization equation (5) 

Digital Twin Simulation 

The Digital Twin approximates the way to behave the engine with time. It utilizes historical and real-time data to 

simulate the engine performance, forecast the future states, depending on the present condition. The simulation helps 

the model to give a feedback on the long-term performance and predicts the maintenance requirements ahead of 

failures. 

The algorithm presented below is: 

Algorithm 1: Digital Twin Simulation Algorithm. 
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1. Input real-time sensor data. 

2. Model behavior of the engine. 

3. Remaining useful life (RUL). 

4. Provide feedback to the digital twin. 

 
Fig 2: Digital Twin Simulation Workflow 

The following flowchart in fig 2 represents the Digital Twin Simulation Process, in which sensor input is initially 

gathered and pruned. This data is then used to update the predictive models, which are used to simulate the digital 

twin. The predictions of the simulation are updated in real-time and used to inform the decision-making process, as 

well as to continuously optimize the results. 

Explainability Layer (SHAP) 

The Explainability Layer gives an overview of the decision-making of the prediction models with SHAP values. SHAP 

is a game-theoretic method of attributing a contribution value to every feature explaining the predictions of machine 

learning models. 

 Feature-Level Impact: SHAP values can be used to measure the effect of a given feature (e.g., engine speed, 

temperature) on the prediction of the model. 

 Maintenance Decision Guidance: The explainability module provides a clear guidance on the features that have the 

most significant impact on predicting the maintenance requirements so that operators can make adequate 

decisions. 

      ∑
                

    
[                         ]

       
………….(6) 

Here in eq (6)       is the Shapley value of feature  i,   is a set of features without i,      is the model prediction of the 

subset S. 
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Fig 3: SHAP Summary Plot for Feature Impact 

It is a SHAP Summary Fig (3) of a Random Forest model, which is used to illustrate the effect of different features on 

the predictions of the model. All the features are shown on the y-axis, and SHAP values (effect on the model output) 

are depicted on the x-axis. The color gradient represents the value of a feature where a high value is in red and low 

value in blue. This plot assists in comprehending the importance of every feature and the association with the output 

of the model.  

This research approach describes how it is possible to develop a real-time predictive maintenance and optimization 

system to manage a complex engine. It is a combination of data creating, machine learning models, multi-objective 

optimization, digital twin simulations, and explainability techniques that provide a powerful solution to predictive 

maintenance. 

Results and Discussions 

EDA and Feature Insights 

The exploratory data analysis (EDA) showed that there were important correlations between different engine 

parameters, which was important in predictive maintenance. 

 
Fig 4: Distribution and Statistical Analysis 

 Correlation Heatmap Fig 4 (a) shows the correlation heatmap, the values of which are large when the engine speed 

and fuel flow are combined, or when the vibration and temperature are combined. These correlations play a crucial 
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role in interpreting engine work, with the faster engine, the higher the fuel usage, and the higher the vibration 

level, the higher the temperature levels, and these are the main signs of the possible engine stress and wear. 

 Stress and Efficiency Relationships: There is significant negative correlation between stress index based on 

vibration, temperature and load (e) and target life. It means that the higher the stress the less efficient will be the 

engine and that means the life of the engine will be shortened. This is further supported by (d) which reveals the 

distribution of the oil quality that is adversely affected by rising levels of stress. 

Model PerformanceComparison. 

We ran the Random Forest (RF), Deep Neural networks (DNN) and XGBoost models to determine the remaining life of 

the engine. 

Table 2: Comparison of Model Performance (RMSE): 

Model RMSE 

Random Forest (RF) 2950.85 

Deep Neural Network (DNN) 2959.18 

Gradient Boosting (XGBoost) 2964.11 

The table below Table 2 shows the values of the Root Mean Squared Error (RMSE) of each of the models that were 

used to predict the remaining life of the engine. According to the findings, the most precise model will be Random 

Forest (RF), then DNN and XGBoost. 

 
Fig 5: Prediction and Model Evaluation 

 Plots As Fig 5 (a) indicates, RF model was the most successful, with an RMSE of 2950.85, which was better than 

DNN (RMSE = 2959.18) and XGBoost models (RMSE = 2964.11). The actual vs. predicted remaining life plot of RF 

in(a) indicates that the model explains the majority of the engine behaviour, where deviations are only observed in 

the case of greater remaining life values. 

 (a), compares a Gradient Boosting with the optimal prediction line. As the comparison indicates, Gradient Boosting 

can work well, whereas (c) RF can work a bit better, which is reflected in the values of RMSE. The 

training/validation loss of DNN in (b), depicts how the loss is evidently reduced, which proves the effectiveness of 

the model used in the training period. 

Optimization Outcomes 

Multi-objective optimization was performed with the help of NSGA-II that investigated the trade-offs of fuel flow and 

NOx emission and engine efficiency. 

 Pareto Front Visualization (b) shows the Pareto front of optimization that shows trade-offs between the fuel 

flow, NOx emissions, and engine efficiency. As observed, a decrease in the flow of fuel will result in better 

emissions but at the expense of engine efficiency whereas increase in engine efficiency will result in more fuel 
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consumption and emissions. This trade off analysis is essential to enabling operators to make logical decisions 

on the engine performance and environmental impact. 

 Trade-off Interpretation: Pareto front brings out the necessity of balancing conflicting goals. This visualization 

allows operators to select an appropriate operational point by making trade-offs between fuel consumption, 

emissions, and efficiency that would be acceptable. 

Maintenance Insights/Anomaly Detection. 

The autoencoders and SHAP values are used to detect anomaly to provide maintenance insights on whether the engine 

is operating normally or abnormally. 

 
Fig 6: Anomaly Detection and Explanation 

 Fig 6 (a) Autoencoder Thresholding The autoencoder anomaly detector of engine speed vs. temperature is shown 

in Figure 6 (a), where the red points indicate anomalies that are far out of the engine normal operating range. 

These anomalies are indicated by reconstruction error which give early warnings of maintenance. 

 Fault Detection Examples (b) is the SHAP summary plot of the RF model, which indicates that engine speed, fuel 

flow and vibration exert the most significant effect on the model predictions. This is essential as it is able to 

determine when an engine needs some maintenance as these characteristics can detect any faults in engine 

behavior. 

 Anomaly Timeline (Reconstruction Error): (c) shows the timeline of anomalies according to reconstruction error, 

the most significant spikes are associated with engine part failures, especially vibration and temperature. This 

shows how autoencoders can identify early warning of failure and cause proactive maintenance alerts. 

Explainability (SHAP) 

   The impact of the engine parameters on the model predictions was analyzed with the help of SHAP values. 

As the SHAP summary plot shown in Figure 3(b) of the Appendix indicates, engine speed, fuel flow, and vibration are 

the most significant factors to predict the remaining life of the RF model. These attributes are important in determining 

engine wear and maintenance timing. The plot assists to determine the reasons why some features have a higher 

contribution to model predictions, which provides transparency in decision-making. 

 Decision Support Analysis (a) displays the effects of features added separately e.g. vibration and temperature on 

the model output. Such insights assist operators to make wise decisions as to which parameters they should 

emphasize within maintenance schedules to ensure greater operational efficiency and less downtime. 

Digital Twin Validation 

The degradation of engine components was simulated in the Digital Twin model, and the remaining life of the 

components predicted. 
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Fig 7: Time Series and Digital Twin Analysis 

 Components Degradation (a-d) Simulation Results The effectively simulated laws of vital engine parameters 

(vibration, temperature, pressure, and remaining life) are followed by the Digital Twin. According to the results of 

the simulation, the remaining life is lower when stress conditions (vibration, temperature, and pressure) exert 

more pressure, which proves the importance of real-time monitoring to predict component failures. 

 There is a Fig 7(e) in the lifecycle Forecasting, which represents the remaining life distribution, with maintenance 

flag, where the engine with maintenance flag has much shorter remaining life. This highlights the importance of 

predictive maintenance in preventing such surprises by predicting the time when important parts will be in need 

of maintenance. 

The actionable information of engine health monitoring is in the predictive maintenance models with use of Digital 

Twin, autoencoders, and SHAP values. This method allows making better decisions to maintain the engines by 

analyzing time series, distribution statistics, model performance, anomaly detection, and explainability. RF model 

proved to be the most successful, and the result of optimization provided appropriate information about the 

compromise between fuel flow, emissions, and efficiency. The Digital Twin simulations and SHAP analysis 

contributed to a better comprehension of the necessity to forecast the components failure and assistance in planning 

the maintenance. 

Discussion 

The findings of the experiments and the models analyzed give valuable information about the possibilities of the AI-

based solutions in the optimization of real-time and predictive maintenance in engine management systems. The 

model performance comparison especially the Random Forest (RF), Deep Neural Networks (DNN), and the XGBoost 

showed that the RF was better in predicting engine life with minimum root mean squared error (RMSE) compared to 

the other algorithms. The overall better performance of the RF model over competitors can be explained by the fact 

that it is capable of dealing with non-linearities and complicated interactions between features in engine data which is 

essential in dynamic systems such as engines that have a number of interconnected factors that determine 

performance. Nevertheless, the minor discrepancies between the models demonstrate the necessity to test different 

machine learning strategies to guarantee the maximum prediction accuracy of different engines of different types and 

in different working conditions. 

The obtained multi-objective optimization, which was done with the help of the NSGA-II algorithm, also illustrates the 

crucial trade-offs that should be taken into account during the real-time engine management. The Pareto front 

illustration indicated the conflict nature in optimizing fuel consumption, decreasing NOx emissions, and engine 

efficiency. These results indicate that a careful balance should be maintained with regard to engine functioning since a 

decrease in one of the variables, i.e., fuel flow, can result in poorer outcomes in other areas, i.e., efficiency. The trade off 

analysis is essential to the operators who need to make well informed decisions that would meet performance and 

environmental goals. This form of multi-objective optimization could be used to inform policies and decision-making 

as industries push to adopt more sustainable operations, whereby the engine systems will be efficient without 

reducing the emissions regulations. 
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The autoencoders and SHAP values can offer anomaly detection and maintenance insights which can offer a proactive 

solution to engine health management. The fact that the autoencoder can detect outliers and early warning of failures 

in engine components is a major benefit over the conventional maintenance schedules, which tend to be reactive, as 

opposed to predictive. This study also showed that engine parameters such as speed, fuel flow, and vibration can be 

used to explain model predictions by using the SHAP values to make decisions more transparent. This characteristic is 

especially noteworthy in high liability scenarios like those in aviation or in important transportation systems whose 

failures may be disastrous. The explainability of SHAP does not only increase the credibility of AI models but also 

enables the engineers and operators to make better decisions, which also leads to the increased safety and reliability of 

engine processes, in general. 

The simulations of the digital twins offered more meaningful information on the long-term performance and 

degradation of the engine components. The simulations also verified the practical aspect of the real-time monitoring 

systems with the remainder of the life of the components proving to stay in line with the stress factors observed like 

vibration, temperature, and pressure. The forecasting of the lifecycle that can be achieved through digital twins is a 

very strong predictive maintenance tool, as it can be better planned and it is less subjected to unexpected downtime. 

Through constant updating of the digital twin model with real-time information, operators are able to predict the 

failure of the component and make proactive maintenance choices which will reduce expensive repairs and 

downtimes. 

Altogether, the combination of machine learning models, multi-objective optimization, anomaly detection, digital twin 

simulations and explainable AI is a holistic approach to complex engine control. This holistic thinking not only 

enhances the predictive maintenance accuracy but also the engine performance makes it meet the emission regulations 

as well as reducing the cost of its operation. The theoretical application of the latter is enormous, not limited to the field 

of engine management but to the mainstream of industrial processes, where real-time decision-making and predictive 

maintenance can be paramount in terms of the efficiency and sustainability of the systems. 

These findings also indicate some significant implications on future study. The most promising way to get better is to 

train AI models on actual world data to increase their predictability and versatility across different working conditions. 

Also, although the present research used synthetic and augmented datasets to model engine conditions, incorporation 

of real working data of engines will make the research more strong and reliable and possibly identify new variables 

that influence performance and reliability. With the maturing of the framework, the embedded/edge-based 

deployment will further make the system more responsive and autonomous, which means that real-time decisions will 

be made quicker and more precise. Lastly, extending the predictive to incorporate federated learning models, may 

enable the sharing of insight both among engines and thus overall system efficiency as well as provide a team of 

learning that pushes the system toward a state of constant optimization. 

Conclusively, the results of this work pose a bright future of the intelligent engine management systems. With the 

integration of live data, predictive analytics, and optimization algorithms, the study is the basis of the new generation 

of engine management technologies which are more efficient but more sustainable, secure, and reliable. 

Conclusion  

In this paper, the authors provide a detailed model of real-time multi-objective optimization and predictive 

maintenance in the advanced engine management systems. The approach to the proposed methodology combines 

synthetic and augmented engine data generation, machine learning models, multi-objective optimization, and digital 

twin simulations and offers explainability layers as the way to obtain a powerful system that can predict engine life, 

identify anomalies, and optimize maintenance strategies. 

1. Data Generation and Preprocessing: A fake dataset was developed using engine parameters in the form of speed, 

fuel flow, temperature and emissions. There were augmented cases of rare maintenance that were used to enhance 

model performance. 

2. Machine Learning Models: To predict the remaining engine life, several models such as, Random Forest, XGBoost, 

Gradient Boosting and Deep Neural Networks are used with consideration of minimal prediction error. 

3. Multi-Objective Optimization: NSGA-II as a multi-objective optimization tool enabled us to trade-off efficiency, 

maintenance cost, emissions, and temperature /torque limitations. 

4. Digital Twin Simulation: A digital twin of the engine system was created, which would give real-time predictive 

feedback to make maintenance decisions. 

5. Explainability Layer: SHAP values were used to provide feature-level explainability, which enhances transparency 

and maintenance decision-making. 

The architecture effectively incorporates data processing, predictive modeling, optimization and decision support in a 

holistic approach to engine management. Machine learning models have been shown to have significant advantages in 

terms of uncertainty estimation, especially deep learning with MC Dropout, and increase the trustworthiness of 

predictions. Multi-objective optimization assures that engine performance, maintenance expenses, and issues in the 
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environment are pursued in a unified manner, which prepares the way of effective engine management systems. 

Digital twin model: The digital twin model is applicable to predictive maintenance in real-time simulation. Explainable 

AI algorithms, e.g. SHAP, offer transparency and confidence in the predictions of the model, which is essential to 

safety-critical applications such as engine control. 

Future Work 

Although the suggested framework can provide a solid groundwork towards predictive maintenance and 

optimization, there are still a few possible research and improvement directions. The next steps are predicted to be: 

1. Reinforcement Learning: The potential to use reinforcement learning (RL) to optimize maintenance policies and 

decision-making during real-time. The system may also be enhanced by RL in the capacity of being able to adapt to 

the environment where it learns through ongoing interactions. 

2. Real-World Engine Datasets: The synthetic datasets utilized in the current work are convenient in terms of the 

model training, yet the results are more precise and trustworthy with real-world engine data. The next step of 

work is to introduce real-world engine sensor data to post-test and refine model predictions. 

3. Edge/Embedded Deployment: The next step in the process will be transitioning to an embedded or edge-based 

deployment of the system, which will enable real-time processing and decision-making on the engine. This will 

contribute much in reducing latency which will result in quicker response as well as autonomy of the system. 

4. Federated Maintenance Insights: By extending the system to include federated learning, where the insights are 

shared between multiple engines, without the data privacy of the engines being affected, group learning will be 

possible. This is capable of improving the predictive abilities of a fleet of engines by exploiting data available in 

various sources with confidentiality. 
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